博士毕业前一年,实验接连失败,曾经想放弃科研!这位90后,国内做博后,2年发表2篇Science,博士毕业三年成为博导!
纳米人 纳米人 2022-09-20

江彬彬,电子科技大学(深圳)高等研究院研究员、博士生导师,深圳市国家级领军人才(2021-2026年),2022年“深圳青年五四奖章”获得者。


主要从事热电材料与器件领域的研究,代表性成果包括:

1)在热电技术研究方面提出了高熵稳定热电材料突破性概念,为大幅提升材料的热电性能指出优化策略;

2)开发适用于中温区热电器件的全流程制备工艺和相关材料,为热电技术从材料迈向器件应用奠定基础。


4年前,博士毕业前夕,接连失败的实验,让他在黑暗中看不到希望,差点放弃科研去企业工作。“有时候到了凌晨两三点,实验失败了,就会处于奔溃的边缘。


反复权衡之后,他还是遵从内心的热爱,选择从事前沿科学研究,博士毕业后来到南方科技大学何佳清教授课题组进行博士后研究,专注一个关键科学难题,以第一作者连续2次在Science报道研究成果,成为国际热电材料领域最活跃的青年科学家之一。


1.png


说明:以下学术内容,来源于南方科技大学新闻网


热电材料能够实现热能与电能之间的直接转换,由热电材料做成的器件具有设备构造简单、高服役稳定性、对热源要求低等优势,在低品质环境废热的回收利用领域展现出无可替代的优势,具有极大的应用前景。然而,当前热电材料较低的性能导致其能量转换效率极大限制了热电技术的商业化应用。热电材料的性能直接由无量纲热电优值zT=S2σT/(κel)来决定,高性能的热电材料需要高的电导率、大的塞贝克系数以及低的热导率,然而这几个材料本征参数之间相互耦合,对某一个参数进行优化时必须兼顾其他性能参数的恶化,因而协同调控热电材料的本征参数以实现热电性能的提升成为热电领域的一个巨大挑战。在热电材料的研究发展历程中,研究者们提出了能带收敛、共振能级、结构纳米化、声子非谐效应、缺陷工程、多尺度化学键、复杂晶体结构以及类液态离子等诸多性能优化策略。目前,这些策略获得的热电性能还是难以解决热电领域多方面的迫切需要,因此研究人员一直在努力寻找新的突破。


1663664170676365.png


2021年2月19号,南方科技大学何佳清团队将高熵稳定的策略用于协同调控材料的电、热传输性能,并成功应用于n型硒化铅基热电材料,通过解耦电热传输机制实现了热电性能的大幅提升。(江彬彬为第一作者)


研究人员基于熵驱动的结构稳定效应开发了一种高性能PbSe基高熵合金热电材料并制备了高效率热电发电器件。结合高分辨透射电镜和理论分析,本工作系统研究了熵增加对于结构稳定以及电、热传输性能的影响,有力地指导了高熵概念在高性能热电材料开发中的应用。


高熵合金概念作为材料领域的新兴研究方向,已经在结构材料领域展现出巨大的应用前景。基于高熵合金迥异于传统合金的相转变和相组成、高度无序的原子分布以及扩展的性能调控空间,这一概念在功能材料领域也逐渐展现出广阔的研究空间。针对多主元高熵合金,熵增加所导致的系统能量改变能够扩展合金元素的固溶度极限,也即以熵为驱动力,通过扩展相空间以增加材料性能调控空间。此外,熵增加所导致的原子分布的高度无序能够在材料中引入强烈的晶格扭曲,从而改变固体材料声子传输路径,降低材料的晶格热导率。因此,基于热电材料的电、热传输行为,高熵概念可能成为一种有效优化热电材料性能的新策略。


1663664184880678.png

图片丨来源于南方科技大学新闻网


研究人员提出针对分相的多元素固溶体,增加元素的种类以提高系统熵值从而实现晶体结构的稳定,并获得元素分布均匀的单相高熵固溶体。这种系统熵所驱动的结构稳定现象可以增大元素在材料中的固溶度,获得使用传统固溶方法难以得到的新型高熵材料体系,还能增大材料性能的调控优化组分空间。具体而言,针对PbSe基热电材料,在Se位固溶S和Te将会得到调幅分解的多相混合物,在此基础上,在Pb位引入Sn将会导致系统熵值的迅速增加,其增加速度远快于构型焓的增加,因而导致系统中熵主导体系吉布斯能的变化,获得了负吉布斯能的结构稳定组成,即实现结构稳定的单相高熵材料。


在结构稳定的单相高熵材料中,减少调幅分解相界面对于电子传输过程的散射,能有效保证材料本身的高电学性能。而基于高分辨透射电镜对于原子位置和晶格扭曲的直接观察和应变分析,研究团队发现系统熵的增加会在材料中引入弥散分布的多尺度多类型晶格应变,特别是会引入不同于低熵材料的晶格切应变。这种熵导致的晶格应变极大干扰了热声子在晶格中的传输,实现了极低的晶格热导率。基于这种熵调控对于材料电热传输性能的优化,将会有效提升传统热电材料的热电性能。在本工作中,n型的(Pb,Sn)(Se,S,Te)体系的热电优值zT可以达到1.8,而基于此高熵体系制备的热电发电器件可以实现12.3%的热电转换效率。


1663664205498107.png


2022年7月8日,南方科技大学何佳清团队在之前研究基础上,进一步将这一优化策略扩展应用到p型碲化锗基热电材料中。在由高熵稳定获得的极低晶格热导率基础上,通过调控电子局域化程度,避免了无序引入对电子传输的影响,从而使高熵碲化锗基材料的电性能得到了显著提升。这种电性能和热性能的协同优化,极大地提高了材料的热电优值,同时还实现了极高的器件转换效率,有利于高熵稳定概念在高性能热电材料开发中的应用。(江彬彬、王戊为共同第一作者)


1663664219937256.png

图片丨来源于南方科技大学新闻网


在碲化锗基材料中,通过高熵策略在锗原子位置上引入多种元素,导致晶格发生扭曲,引起电子发生重排,从而改变了电子的局域化程度。研究团队采用DPC-STEM技术来表征这种材料中电子的转移和重排,发现在纯的碲化锗材料中,锗和碲原子之间的电子存在很强的耦合效应,而通过多元素固溶的高熵碲化锗能够稳定晶体结构,锗原子会从菱形的偏离中心位置向几何中心位置移动,从而实现不同原子之间耦合电场的解耦效应。这种由于高熵稳定现象导致的电场解耦效应能够避免电子的局域化现象,通过将共价键的局域电子转变为超价键的非局域电子来促进电子长程传输,从而实现对电性能的提高。基于对碲化锗基高熵热电材料电传输性能的测定以及由于高熵稳定导致的电子非局域现象,研究团队发现材料的功率因子不仅没有下降,反而在中低温区获得了大幅提升。


这种高熵稳定现象在大幅提升中低温区电传输性能的同时,仍然能够大幅降低晶格热导率。其具体机制除了晶格扭曲以外,还包括由于高无序度存在所导致的声子局域现象。基于拉曼光谱和声速测定,研究团队发现碲化锗基材料中的声子长程输运被限制,也即声子被局域在分立的频率模式,难以相互共振交换热量。同时,横波声子对这种局域效应更为敏感,而纵波声子则相对不敏感,这将会造成横波声子的软化。基于格林奈森参数的数学表达形式,横波声子的软化导致了强非简谐效应,表明声子散射的倒逆过程将会大幅增强,这是高熵稳定碲化锗基材料晶格热导率大幅降低的一个重要原因。


由于高熵稳定对电子和声子的协同优化,碲化锗基材料的热电优值得到了明显提升,其ZT值可以达到2.7,而采用这种高性能的热电材料,研究团队开发了单级和分级热电发电器件,器件的能量转换效率可以达到10.5%和13.3%,为最高的实验热电转换效率。


如今,32岁的江彬彬已经成为了双一流大学的博士生导师。回望2018年博士毕业前夕的迷茫,似乎是大梦一场。


每一位追梦人

都有美好的未来


参考文献:

【1】Binbin Jiang et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830-834.

https://www.science.org/doi/10.1126/science.abe1292

【2】Binbin Jiang et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science, 2022, 377, 208-213.

https://www.science.org/doi/10.1126/science.abq5815

加载更多
1134

版权声明:

1) 本文仅代表原作者观点,不代表本平台立场,请批判性阅读! 2) 本文内容若存在版权问题,请联系我们及时处理。 3) 除特别说明,本文版权归纳米人工作室所有,翻版必究!
纳米人
你好测试
copryright 2016 纳米人 闽ICP备16031428号-1

关注公众号